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In this work, the systematic studies of the effect of electron correlations in a bridge of a tunneling junction
on transport properties is presented while the leads’ electrons are considered to be noninteracting. A diagram-
matic technique with respect to the Coulomb interaction is developed for various nonequilibrium bridge
Green’s functions. Dyson equations on a Keldysh contour for different Keldysh functions is derived. It is
shown exactly that the structure of the Dyson equation Keldysh functions of the bridge molecule is the same
as for a gas-phase bridge molecule where the zero order nonequilibrium Green’s functions are modified by the
interaction with the leads’ electrons. These Green’s functions contain nonvanishing imaginary parts that depend
on the interaction between leads’ and bridge electrons. As an example, the nonequilibrium bridge Green’s
functions in the random phase approximation are found where both direct and exchange terms are taken into
account.
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I. INTRODUCTION

The proliferation of experimental techniques in molecular
electronics1,2 requires the further development of sophisti-
cated computational methods to perform predictive calcula-
tions of conduction properties. There are several methodolo-
gies to find the electric current: the tight binding
approximation,3–5 density functional theory �DFT�,6–8 elec-
tron propagator methods9–11 or many-body electron scatter-
ing approach,12–14 the ionization potentials, and the electron
affinities should be calculated rather than orbital energies in
order to find electric current. The tight-binding approxima-
tion is an empirical method where electron correlation inter-
action is not included. In the latter two theories electron cor-
relation is considered but in different ways. DFT employs an
exchange potential to include exchange interaction into the
calculation scheme. Such exchange potentials are functionals
of an electron density that are chosen to fit experimental
data, whereas electron propagator methods do not contain
any adjustable parameters, functions, or functionals. The
electron propagator approach has been widely used for quan-
tum calculations of different molecular electronic
properties.15–20 It has been unambiguously proved that this
method provides reliable results and is able to explain ex-
perimental data and predict novel properties.21–27 Another
approach based on the generalization of Hedin’s screened
potential expansion28 to nonequilibrium Green’s functions
was proposed by Mukamel and co-workers29 where closed
hierarchy of equations was derived for Green’s function,
self-energy, screened potential, and vertex function in a
Liouville space.

In this work, to include electron correlation effects, we
employ the Green’s function diagrammatic technique for mo-
lecular tunneling systems. Predictive calculations of trans-
port properties of molecular devices may be improved by
incorporation of electron propagator methodology.

In tunneling junctions, the molecular bridge electrons in-
teract with electrons from the leads, and therefore the elec-
tronic levels of the molecular subsystem are modified by this
interaction. Even if this interaction is small, there is finite

dissipation resulting in the broadening of molecular levels. In
the case of an isolated molecule, however, the imaginary part
of the molecular Green’s functions is infinitesimally small.
Thus, the methodology of the calculations of the electronic
levels of a bridge subsystem in a molecular tunneling junc-
tion should be reconsidered. The most systematic approach
in many-body theory is a diagrammatic expansion with re-
spect to the perturbation. In a many electron system this
perturbation is usually the Coulomb interaction. In the case
of tunneling junctions there are two interactions: �a� the in-
teraction between the lead electrons and the electrons in the
bridge and �b� the Coulomb interaction within the bridge �in
this work we consider that the leads’ electrons are noninter-
acting�. Hence, we consider these two interactions as pertur-
bations. For noninteracting lead electrons the expression for
electric current was obtained in Refs. 30 and 31.

J =
ie

2�
� d�

2�
Tr���L − �R�G� + �fL − fR��Gr − Ga�� . �1�

Here, �n1,n2

L,R ��� are line-broadening matrices defined as fol-
lows:

�n1,n2

L,R ��� = ��
k

�VL,R�k,n1�VL,R
� �k,n2� + c . c .���� − 	k

L,R� .

�2�

In Eq. �1� G�, Gr, and Ga are nonequilibrium Green’s func-
tions of the bridge where the interaction between the bridge
and leads’ electrons is included into the Green’s functions. fL
and fR are Fermi-functions of the left and right leads, respec-
tively. VL,R�k ,n1� is the matrix element of the interaction
between the electrons of the left �right� lead and the bridge
electrons. To determine the electric current, it is necessary to
find Keldysh functions of the bridge molecule. These
Green’s functions are modified by the interactions with the
leads electrons.

The main goal of this research is to find nonequilibrium
bridge Green’s functions by developing a diagrammatic ap-
proach. In particular, we derive the Dyson equations for
bridge Keldysh functions that are modified by the interaction
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with the tunneling junction. The formalism of Feynman dia-
grams for noninteracting and interacting bridge electrons is
developed. We show that the Dyson equations for bridge
nonequilibrium Green’s functions has the same structure as
the Dyson equations for equilibrium Green’s functions �with
no interaction with the leads�, however, the zeroth Green’s
functions are modified by the interaction with the lead elec-
trons. As an example we consider the nonequilibrium bridge
Green’s function in the random phase approximation �RPA�
where both direct and exchange terms are taken into account.

II. KELDYSH FUNCTIONS FOR NONINTERACTING
BRIDGE ELECTRONS: THE DIAGRAMMATIC

APPROACH

The Hamiltonian that describes a tunnel junction is given
by the following expression:

Ĥ = ĤL + ĤR + ĤM + �
k,n

��VL�k,n�ck
†dn + H.c.� + �VR�k,n�bk

†dn

+ H.c.�� , �3�

where only in the bridge Hamiltonian, ĤM, we have included
Coulomb interaction between the electrons:

ĤL = �
k

	k
Lck

†ck,

ĤR = �
k

	k
Rbk

†bk,

ĤM = �
n

	ndk
†dn +

1

2 �
n1,n2,n3,n4

Vn1,n2,n4,n3

�0� dn1

† dn2

† dn3
dn4

. �4�

Here, ck and ck
† are annihilation and creation Fermi operators

for the left lead electrons, bk, bk
† are the same but for the right

lead electrons, and dn, dn
† are creation and annihilation opera-

tors for the bridge electrons. In Eq. �3�, VL,R�k ,n� denotes the
tunneling matrix element between the kth electronic state of
the left �or right� lead and the nth bridge electronic state. In
Eq. �4� Vn1,n2,n4,n3

�0� is a Coulomb integral in the bridge. 	k
L, 	k

R,
and 	n stand for the single electron orbital electronic energies
in the left lead, the right lead, and the bridge, respectively.

A. Uncorrelated electrons

To understand the diagrammatic approach which is intro-
duced below, we first determine the nonequilibrium Green’s
functions for uncorrelated electrons in the leads and the
bridge on the Keldysh contour employing a diagrammatic
expansion rather than the equation of motion.30,31 For such a
system the Hamiltonian is given by:

Ĥ0 = �
k

	k
Lck

†ck + �
k

	k
Rbk

†bk + �
n

	ndk
†dn. �5�

In this subsection we calculate the Keldysh functions for the
electrons in the bridge. Nonequilibrium Green’s functions
between the bridge, and left lead, and left-lead-bridge elec-
trons are defined in the following way:

iG̃nm�t − t�� = 	T̃dn�t�dm
† �t��
 , �6�

igkk�
L �t − t�� = 	T̃ck�t�ck�

† �t��
 , �7�

igkk�
R �t − t�� = 	T̃bk�t�bk�

† �t��
 , �8�

iG̃nk�t − t�� = 	T̃dn�t�ck
†�t��
 . �9�

The Keldysh functions for the right electrode should be de-
fined in the same manner. In Eqs. �6�–�9� we use time order-

ing T̃ on the Keldysh contour.31,32

In the interaction representation, the bridge Keldysh func-
tions are presented as follows:

iG̃nm
�0��t − t�� = 	T̃d̃n�t�d̃m

† �t��Ŝc
 , �10�

where Sc is a scattering matrix31–37 with the time ordering on
the Keldysh contour c:

Ŝc = T̃ exp�− i�
c

dt1Ĥint�t1��
= �

l=0



�− i�l

l!
�

c

dt1. . .�
c

dtlT̃Ĥint�t1� . . . Ĥint�tl� . �11�

Here, the operators for Ĥint�t� are taken in the interaction
representation:

d̃n�t� = eiĤ0tdne−iĤ0t,

c̃k�t� = eiĤ0tcke
−iĤ0t,

b̃k�t� = eiĤ0tbke
−iĤ0t. �12�

In Eq. �11�, Ĥint in the interaction representation is defined as
the interaction between the lead and bridge electrons:

Ĥint�t� = �
k,n

��VL�k,n�c̃k
†�t�d̃n�t� + H.c.�

+ �VR�k,n�b̃k
†�t�d̃n�t� + H.c.�� . �13�

For simplicity, we consider only the left lead. The generali-
zation to two leads is straightforward. Since the interaction
has an odd number of each operators c and d �see Eq. �3��,
the Taylor expansion in the S matrix in Eq. �11� contains
only even terms, the nonequilibrium bridge Green’s function
yields:

iG̃nm
�0��t − t�� = 	T̃d̃n�t�d̃m

† �t��Ŝc


= �
l=0



�− 1�l

�2l�! �
k1,n1

¯ �
k2l,n2l

�
c

dt1¯�
c

dt2l

�	T̃d̃n�t�d̃m
† �t���VL�k1,n1�c̃k1

† �t1�d̃n1
�t1�

+ H.c.� . . . �VL�k2l,n2l�c̃k2l

† �t2l�d̃n2l
�t2l� + H.c.�
 .

�14�
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It is apparent that different types of electrons should be av-
eraged separately. According to Wick’s theorem,32,34–36 the
averages of the multiple products of the operators in Eq. �14�
can be decoupled into the product of Green’s functions
�paired operators�. To find a Dyson equation, we regroup the
infinite sums in the following manner:

iG̃nm
�0��t − t��

= �
l=0



�− 1�l

�2l�! �
k2l−1,n2l−1

�
k2l,n2l

�
c

dt21−1�
c

dt2l	T̃d̃n�t�d̃n2l

† �t2l�


��VL�k2l,n2l�VL
��k2l−1,n2l−1�	T̃c̃k2l

�t2l�c̃k2l−1

† �t2l−1�
�

�� . . . � , �15�

where the rest of the series is presented in the brackets. Due
to the symmetry of the integrand in the T-exponent series, t2l
and t2l−1 can be chosen 2l�2l−1� /2 times. Therefore, the
expression in the brackets is in fact the exact Green’s func-

tion for the bridge electrons, iG̃n2m
�0� �t2− t��. Thus, one obtains

the following Dyson equation for the bridge Keldysh func-
tion:

G̃nm
�0��t − t�� = Gnm

�0��t − t�� + �
n1,n2

�
c

dt1�
c

dt2Gnn1

�0� �t − t1�

��n1n2

�0� �t1 − t2�G̃n2m
�0� �t2 − t�� , �16�

where the self-energy matrix is defined in the following man-
ner:

�n1,n2

�0� �t1 − t2� = �
k1,k2

��VL�k1,n1�gk1k2

L �t1 − t2�VL
��n2,k2��

+ �VR�k1,n1�gk1k2

R �t1 − t2�VR
��n2,k2��� .

�17�

In Eq. �17� the generalization to two leads has been made.
Here the left and right lead Keldysh functions are defined by
Eqs. �7� and �8�. The Dyson Eq. �16� is diagrammatically
presented for noninteracting electrons in Fig. 1.

In this figure a solid line represents the zeroth bridge
Keldysh function, G�0�r�t− t��, and a waged line defines a
linear combination of zeroth lead Keldysh functions deter-
mined by Eq. �17�: �k1,k2

VL�k1 ,n1�gk1k2

L �t1− t2�VL
��n2 ,k2�. The

dot is interaction, V, that has been included into the defini-
tion of a wage line. The graph describes a perturbation series
with respect to V2.

B. Renormalized zeroth Green’s functions

The nonequilibrium zeroth Green’s functions are deter-
mined by the Dyson equations Eqs. �16� and �17� on the
Keldysh contour. The standard way to solve these equations
is to perform a Fourier transform and then solve the algebraic
matrix equations for the Green’s functions. For the Keldysh
functions this procedure cannot be implemented in a straight-
forward way because of two time lines. Thus, we should find
the Fourier transform for each Keldysh function after apply-
ing the Langreth’s mapping procedure.31,38 In particular for

G̃nm
�0���t− t��, the Dyson equation is given by

G̃nm
�0���t − t�� = Gnm

�0���t − t�� + �
n1,n2

�
t0

t

dt1�
t0

t

dt2Gnn1

�0�r�t − t1�

��n1n2

�0���t1 − t2�G̃n2m
�0�a�t2 − t��

+ �
n1,n2

�
t0

t

dt1�
t0

t

dt2Gnn1

�0���t − t1�

��n1n2

�0�a �t1 − t2�G̃n2m
�0�a�t2 − t��

+ �
n1,n2

�
t0

t

dt1�
t0

t

dt2Gnn1

�0�r�t − t1�

��n1n2

�0�r �t1 − t2�G̃n2m
�0���t2 − t�� . �18�

For G̃nm
�0�a�t− t�� we obtain the following Dyson equation:

G̃nm
�0�a�t − t�� = Gnm

�0�a�t − t�� + �
n1,n2

�
t0

t

dt1�
t0

t

dt2G̃nn1

�0�a�t − t1�

��n1n2

�0�a �t1 − t2�Gn2m
�0�a�t2 − t�� . �19�

Thus, the Fourier transform of Eqs. �18� and �19� in a matrix
form �here we omit n ,m for simplicity� yields, respectively:

G̃�0����� = G�0����� + G�0�������0�����G̃�0�a���

+ G�0�������0�a���G̃�0�a���

+ G�0�r�����0�r���G̃�0����� , �20�

and

G̃�0�a��� = G�0�a��� + G̃�0�a�����0�a���G�0�a��� . �21�

From the second equation we find that

G̃�0����� = G�0�a����1̂ − ��0�a���G�0�a����−1. �22�

Using this equation, we obtain the matrix solution of Eq.
�20�

G̃�0����� = �1̂ − G�0�r�����0�r����−1

��G�0����� + G�0�r�����0�����G�0�a����

��1̂ − ��0�a���G�0�a����−1. �23�

...

G
=

˜ (0) G(0)
G(0) G(0)

G(0) G(0) G(0)

FIG. 1. Diagrammatic representation of Dyson Eq. �16�. A solid
line denotes the zeroth bridge Keldysh function, a waged line stands
for a linear combination of the zeroth lead Keldysh functions deter-
mined by Eq. �17�, and a dot represents a tunneling transition
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To solve Eqs. �22� and �23�, we should find ��0�����,
��0�a���, and ��0�r��� from Eq. �17�. Thus,

�n1,n2

� �t1 − t2� = �
k1,k2

��VL�k1,n1�gk1k2

L� �t1 − t2�VL
��n2,k2��

+ �VR�k1,n1�gk1k2

R� �t1 − t2�VR
��n2,k2��� .

�24�

For noninteracting electrons gk1k2

L,R���� is known32

gk1k2

L,R���� = 2i�fL,R����k1k2
��� − 	k1

L,R� , �25�

where

gk1k2

L,R���� = �
−





dtei�tgk1k2

L,R��t� . �26�

Is a Fourier transform of the Green’s function. In the nonin-
teracting electron gas approximation:

�n1,n2

� ��� = i�fL����n1,n2

L ��� + fR����n1,n2

R ���� . �27�

Here �n1,n2

L,R ��� are line-broadening matrices defined as fol-
lows:

�n1,n2

L,R ��� = 2��
k

�VL,R�k,n1�VL,R
� �n2,k����� − 	k

L,R� .

�28�

In this definition � is always positive.
To find ��0�a���, and ��0�r��� we employ Eq. �17� where

�n1,n2

�0�a �t1 − t2� = �
k1,k2

��VL�k1,n1�gk1k2

La �t1 − t2�VL
��n2,k2��

+ �VR�k1,n1�gk1k2

Ra �t1 − t2�VR
��n2,k2��� .

�29�

The retarded Green’s function can be easily found from the
following relation:

G̃r��� = �G̃a����†. �30�

In the case of noninteracting electrons

gk1k2

L,Rr,a��� =
�k1k2

� − 	k
L,R  i�

�� → + 0� . �31�

Consequently,

�n1,n2

a ��� = �
k
��VL�k,n1�V

L
*�n2,k�

� − 	k
L − i�

�
+ �VR�k,n1�V

R
*�n2,k�

� − 	k
R − i�

�� . �32�

Equations �27� and �32� coincide with the similar equations
obtained by Meir and Wingreen in Refs. 30 and 31 by mak-
ing use of the equation-of-motion approach.

Now that the self-energy operators are known, the zeroth
Keldysh functions can be easily obtained from Eqs. �22� and
�23�:

G̃nm
�0����� = i�

l1,l2

�fL����l1,l2
L + fR����l1,l2

R �

�
�� − 	m + i���� − 	n + i��
�� − 	l1

− i���� − 	l2
− i��

��� − 	̃ml1
��� + i

�ml1
���

2
�−1

��� − 	̃l2n��� − i
�l2n���

2
�−1

, �33�

and

G̃nm
�0�r,a��� =

� − 	m  i�

� − 	n  i�
�� − 	̃mn���  i

�mn

2
�−1

. �34�

In Eqs. �33� and �34�, we have assumed that V is finite in-
troducing the following definitions:

	̃mn � 	m + P�
k

Vmk
L Vkn

L�

� − 	k
L + P�

k

Vmk
R Vkn

R�

� − 	k
R ,

�mn��� = �mm
L ��� + �mm

R ��� . �35�

The presented derivation of Eqs. �33� and �34� is exact.

(a) (b)

(d)

(c)

. . .

G˜ (0) G˜ (0) G˜ (0)

G(0)G(0) G(0)

G(0) G(0) G(0)

FIG. 2. Diagrammatic representation of the first order Hartree-
Fock exchange diagram: �a� no interaction with the leads is in-
cluded, �b� the interaction with the leads is considered in the second
order with respect to V2 for each G�0�, �c� the interaction with the
lead electrons is considered in all orders to V2, and �d� the diagram
�c� is presented according to Dyson Eq. �16� where the zeroth
Green’s functions, G�0�, have been substituted by the renormalized

zeroth Green’s functions, G̃�0�.
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In the next section we show that the Green’s functions
�33� and �34� become the zeroth Green’s functions in dia-
grammatic expansion if the Coulomb interaction is consid-
ered between the bridge electrons.

III. NONEQUILIBRIUM GREEN’S FUNCTIONS FOR
INTERACTING BRIDGE ELECTRONS

In this section we include electron-electron interaction
into the bridge Hamiltonian. Thus, the bridge Hamiltonian
yields:

ĤM = �
n

	ndk
†dn +

1

2 �
n1,n2,n3,n4

Vn1,n2,n4,n3

�c� dn1

† dn2

† dn3
dn4

,

�36�

where Vn1,n2,n4,n3

�c� represents a Coulomb four center integral.
For simplicity we assume that there is only one �left� elec-

trode. The generalization to two electrodes is straightforward
and will be done at the end. As in the case of noninteracting
electrons, we present Keldysh functions described in the
same manner as in Eq. �10�:

iGnm�t − t�� = 	T̃d̃n�t�d̃m
† �t��ŜC
 . �37�

Here, Sc is a scattering matrix given by Eq. �11�. All the
operators are taken in the interaction representation de-
scribed by Eq. �12�. The interaction Hamiltonian includes
now both tunneling and Coulomb terms:

Ĥint�t� = �
k,n

�VL�k,n�c̃k
†�t�d̃n�t� + H.c.�

+
1

2 �
n1,n2,n3,n4

Vn1,n2,n4,n3

�c� d̃n1

† d̃n2

† d̃n3
d̃n4

. �38�

Thus, a diagrammatic expansion in the interaction represen-
tation can be presented as follows:

iG̃nm
�0��t − t�� = 	T̃d̃n�t�d̃m

† �t��ŜC
 = �
l=0



�− 1�i

�l�! �c

dt1. . .�
c

dtl�T̃d̃n�t�d̃m
† �t��� �

k1,n1

VL�k1,n1�c̃k1

† �t1�d̃n1
�t1� + H.c.

+
1

2 �
n1,n2,n3,n4

Vn1,n2,n4,n3

�c� dn1

† �t1�dn2

† �t1�dn3
�t1�dn4

�t1��¯ ��
kl,nl

VL�kl,nl�c̃kl

† �tl�d̃nl
�tl� + H.c.

+
1

2 �
n1,n2,n3,n4

Vn1,n2,n4,n3

�c� dn1

† �tl�dn2

† �tl�dn3
�tl�dn4

�tl��� . �39�

In Eq. �39� all terms, even and odd, are included into the expansion. As a particular case we consider a first order exchange
Hartree-Fock diagram is depicted in Fig. 2�a�. The exchange diagram �a� is given by the following equation:

Gkl
�1��t − t�� = �− i�3 �

n1n2n3n4

Vn1n2n33
n4�

c

dt1G̃kn1
�t − t1��0�G̃n3n2

�0� �t1 − t1
+�G̃n4l

�0��t1 − t��

= �− i�3�
n

Vknnl�
c

dt1G̃kk�t − t1��0�G̃nn
�0��t1 − t1

+�G̃ll
�0��t1 − t�� . �40�

If we turn on the interaction with the leads as shown in Fig.
2�b�, the tunneling self energy terms can be inserted into a
zeroth Green’s function by breaking the solid line. In the
same manner all orders of V2 can be included into the zeroth
Green’s function as depicted in Fig. 2�c�. According to Eq.
�16�, such insertions are the renormalized zeroth Green’s
functions shown in Fig. 2�d�. Thus, for any order diagram,
the lead-bridge interaction retains the topological structure of
a graph in the same manner as for noninteracting case where
the ordinary zeroth Green’s functions are substituted by the
renormalized zeroth Green’s functions described by Eqs.
�33� and �34�. The rigorous proof of this is almost the same
as for noninteracting electrons presented in a previous sec-
tion and is based on the essential property of a T product,

T̃A�t1�A�t2�= T̃A�t2�A�t1� independent of the order of opera-

tors. Indeed, by grouping the operators T̃d̃�t1�d̃�t2� in the
product �39�, the order of the time sequence becomes irrel-
evant. This feature is crucial to break up a zeroth order line
and substitute it by a renormalized zero order keldysh func-
tion. Hence, the Dyson equation for nonequilibrium Green’s
function yields;

G�t − t�� = G̃�0��t − t�� + �
c

dt1�
c

dt2G̃�0��t − t1�

���t1 − t2�G�t2 − t�� , �41�

where self-energy operator ��t� includes all possible dia-
grams with respect to the Coulomb interaction taken with the
renormalized zeroth Keldysh functions. The approach pre-
sented above is valid if the Coulomb interaction is consid-
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ered between the bridge electrons, while lead elections are
still nonintersecting. For the calculation of nonequlibrium
Green’s functions such a change is essential because now the
zeroth Green’s functions have finite imaginary parts as de-
scribed by Eqs. �33� and �34�. Thus, various quantum chemi-
cal schemes for Green’s functions calculations have to be
modified. As an example of such modification we consider a
bridge molecule in the RPA.

IV. NONEQUILIBRIUM BRIDGE GREEN’S FUNCTIONS
IN THE RANDOM PHASE APPROXIMATION

In this section, we present the formalism and derive the
integral equations for the bridge nonequilibrium Green’s
functions in the RPA.

For further study of the nonequilibrium bridge functions
in the RPA, it is useful to prove a statement where Hartree-
Fock nonequilibrium Green’s functions are considered as
zero order Green’s functions. Such renormalization results in
the omission of first order self-energy operator from the dia-
grammatic expansion of the Green’s functions with respect
to the Coulomb interaction. As a first step, we introduce an
inverse operator on a Keldysh contour:

�
c

dt1Â−1�t − t1�Â�t1 − t�� = ��t − t�� , �42�

where all times are taken on the Keldysh contour c. For
simplicity we omit the integration symbol and the integral of
the operator product is presented as the product of the opera-
tors:

ÂB̂ � �
c

dt1Â�t − t1�B̂�t1 − t�� . �43�

We have previously proved that the Dyson equation for non-
equilibrium bridge Green’s functions has the same topologi-
cal structure as the equilibrium Green’s function where the
zeroth Green’s functions, G�0� are substituted by the renor-

malized zeroth Green’s functions, G̃�0� �see integral Eq.
�41��:

Ĝ = Ĝ̃�0� + Ĝ̃�0��̂Ĝ . �44�

In addition, we introduce the Hartree-Fock Keldysh function
satisfied by the following nonlinear Dyson equation:

ĜHF = Ĝ̃�0� + Ĝ̃�0��̂HFĜHF, �45�

where

�mn
HF = i�

k

�mkVcnk�G̃k�t − t+� . �46�

Here the four-center Coulomb integral is defined as follows:

�mkVckn� � 	mkVcnk
 − 	mkVckn
 . �47�

Both Dyson Eqs. �44� and �46� can be presented in the fol-
lowing equivalent forms:

Ĝ−1 = �Ĝ̃�0��−1 − �̂ ,

�ĜHF�−1 = �Ĝ̃�0��−1 − �̂HF. �48�

Subtracting the second equation from the first one and apply-
ing the simple algebraic transformations, we obtain the fol-
lowing Dyson equation for the Keldysh functions:

Ĝ = Ĝ̃�HF� + Ĝ̃�HF���̂ − �̂HF�Ĝ . �49�

Thus, the zero order Green’s functions are presented by the
Hartree-Fock Green’s functions, and the self energy operator
is given by all possible diagrams started from the second
order. In this research we consider the self-energy operator in
the RPA:35,36

�RPA = �̂ − �̂HF. �50�

The Dyson equation for the Keldysh function in the RPA is
graphically depicted in Fig. 3 �Ref. 35� in term of the Hu-
genholtz diagrams.

The RPA self-energy operator can be presented in the fol-
lowing manner:35,36

���
RPA = �

�,�,�
�

�,�,�
���Vc������;��G��

HF���Vc��� .

�51�

Here, the polarization operator is defined in Fig. 4: Figure 4
describes an integral equation for a one particle-one-hole po-
larization operator that includes both direct �the first part�
and exchange �the second part� terms. Usually an exchange
term is small in metals and always disregarded.35 For mol-
ecules, however, �or other finite Fermi systems� this term
should be included. According to Fig. 4, we can write the
following set of integral equations for the polarization opera-
tor:

. . .

GG
= +

GHFHF

G

FIG. 3. Hugenlotz diagrammatic representation of Dyson Eq.
�49� in the RPA. The chain line represents the polarization operator
��t− t�� �Refs. 35 and 36�. = + –

FIG. 4. Diagrammatic representation of Dyson Eq. �49� for the
polarization operator � in the RPA �Refs. 35 and 36�.
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�aA�,��t − t�� = G�a
HF�t − t��GA�

HF�t� − t� + �
bdBC

�
c

dt1�aCVcAd�Gdb
HF�t − t1�GBC

HF�t1 − t��bB;���t1 − t��

+ �
bdBC

�
c

dt1�adVcAC�Gdb
HF�t1 − t�GBC

HF�t − t1��Bb;���t1 − t�� ,

�Aa�,��t − t�� = GA�
HF�t� − t�Ga�

HF�t − t�� + �
bdBC

�
c

dt1�ACVcad�Gdb
HF�t − t1�GBC

HF�t1 − t�

��bB;���t1 − t�� �
bdBC

�
c

dt1�AdVcaC�Gdb
HF�t1 − t�GBC

HF�t − t1��Bb;���t1 − t�� �52�

Here, we have introduced the following notation: small
Greek letters, � ,� , . . ., denote both electronic �occupied� and
hole �unoccupied� states, small letters a ,b ,c. . ., denote only
electronic states, and large letters, A ,B ,C , . . ., denote only
hole states. We also distinguish the polarization operators,
�aA�,��t− t�� and �Aa�,��t− t��. The second sum in each
equation represents the exchange term in Fig. 4. Equations
�52� are written on the Keldysh contour. Finally different
nonequilibrium functions can be found my making use of
Langreth’s projection methodology.38 Here, we do not
present tedious integral equations for each Keldysh polariza-
tion operator because we do not intend to perform numerical
calculations for nonequilibrium Green’s functions in this
work.

V. CONCLUSIONS

In this research, we have studied the effect of electron
correlations in a bridge �while lead electrons remain uncor-
related� on transport properties in molecular tunnel junctions.
To determine nonequilibrium Green’s functions, we have
proposed a diagrammatic technique on a Keldysh time con-
tour. First we have considered a system of noninteracting
electrons in both leads and the bridge. We have derived the

Dyson equation for renormalized zeroth Keldysh functions
�see Eqs. �16� and �17��. These equations have been solved
and the Keldysh functions have been obtained in the energy
representation of Eqs. �33� and �34� where the renormalized
energies and their imaginary parts are given by Eq. �35�. We
have presented the procedure for diagrammatic expansion for
Keldysh functions where both tunneling and Coulomb inter-
actions have been considered as perturbations. After some
regrouping of the terms, we have found that the zeroth
Green’s functions can be renormalized to the functions given
by Eqs. �33� and �34�. Moreover, all diagrams have repre-
sented the familiar diagrammatic expansion with respect to
the Coulomb interaction only. Thus, it has become possible
to write the exact Dyson equation with the renormalized ze-
roth Green’s functions with finite imaginary parts. As an ex-
ample, we have studied a bridge molecule in the random
phase approximation. Within the RPA we have derived the
equations for the nonequilibrium Green’s functions where
both direct and indirect terms have been considered in one
particle-one hole, 1p−1h, channel �1p-1h�. Now that the
nonequilibrium Green’s functions are found, one is able to
determine electric current according to the Wingreen and
Meir’s formula �1�.30,31
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